
G. Zachmann 82 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS 

Application of Dot Product: Document Similarity 

§  Task: compute "similarity" of documents (think Google) 

§ One of the fundamental tasks in information retrieval (IR) 

§  Example: search engine / database of scientific papers needs to 
suggest similar papers for a given one 

§  Assumption: all documents are over a given, fixed vocabulary V 
consisting of N words (e.g., all English words) 

§  Consequence: set of words, V,  occurring in the docs is known & fixed 

§  Assumption: don't consider word order → bag of words model 

§  Consequence: "John is quicker than Mary" = "Mary is quicker than John" 
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§  Representation of a document D: 

§  For each word w∈V: determine f(w) = frequency of word w in D 

§  Example: 

§  Fix a word order in V = ( v1, v2, v3, …, vN )   (in principle, any order will do) 

§  Represent D as a vector in RN: 

§  Note: our vector space is HUGE  (N ~ 100,000 – 10,000,000) 

§  For each word w, there is one axis in our vector space! 

Anthony & 
Cleopatra 

Julius 
Caesar  

The  
Tempest 

Hamlet  Othello  Macbeth  
 

ANTHONY 
BRUTUS  
CAESAR 
CALPURNIA 
CLEOPATRA 
MERCY 
WORSER 
... 

157 
4 

232 
0 

57 
2 
2 

... 

73 
157 
227 

10 
0 
0 
0 

... 

0 
0 
0 
0 
0 
3 
1 

... 

0 
2 
2 
0 
0 
8 
1 

... 

0 
0 
1 
0 
0 
5 
1 

... 

1 
0 
0 
0 
0 
8 
5 

... 

D =
�
f (v1), f (v2), f (v3), . . . , f (vN)

�
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§  Define similarity s between documents  
D1 and D2 as 

 

 

 

 

 

§  This similarity measure is called "vector space model" 

§ One of the most frequently used similarity measures in IR 

§  Note: our definition is a slightly simplified version of the commonly 
used one (we omitted the tf-idf weighting) 

RICH 

s(D1,D2) =
D1 ·D2

kD1k·kD2k
= cos(D1,D2)
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§  Why not the Euclidean distance                    ? 

§ Otherwise: documents D, and D concatenated to itself would be very 
dissimilar! 

§  Why do we need the normalization by               ? 

§  Same reason … 

kD1 � D2k

1
kD1k·kD2k
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Parallel Reduction Revisited 

§  Why didn't we do the reduction this way? 

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2 

0 2 4 6 8 10 12 14 

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2 

0 4 8 12 

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2 

0 8 

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 

0 

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2 

TIDs 

TIDs 

TIDs 

TIDs 
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§  The kernel for this algorithm: 

// do reduction in shared mem 
__syncthreads(); 
for ( int i = 1; i < blockDim.x; i *= 2 )  
{ 
   if ( threadIdx.x % (2*i) == 0 ) 
      cache[threadIdx.x] += cache[threadIdx.x + i]; 
   __syncthreads(); 
} 

Problem:  
highly 
divergent  
warps are  
very inefficient 
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A Common, Massively Parallel Programming Pattern 

§  Partition your domain such that each subset fits into shared memory; 
handle each data subset with one thread block 
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§  Load the subset from global memory to shared memory; exploit 
memory-level parallelism by loading one piece per thread; don't forget 
to synchronize all threads before continuing! 
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§  Perform the computation on the subset in shared memory 
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§  Copy the result from shared memory back to global memory 
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Remarks on Memory (Applies to GPUs and CPUs) 

§  In our dot product kernel, we could have done everything in 
global memory, but … 

§  Global memory bandwidth is loooow: 

Ideal Reality 
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Coalesced	  Memory	  Access 

§  One of the most important optimization techniques for massively 
parallel algorithm design (on GPUs and — to some degree — CPUs!) 

Coalesced	  memory	  accesses	   Uncoalesced	  memory	  accesses	  
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§  When does the GPU win over the CPU? 

§  Arithmetic intensity of an algorithm :=  

§  Sometimes also called computational intensity 

§  Unfortunately, many (most?) algorithms have a low arithmetic 
intensity → they are bandwidth limited 

§  GPU wins if memory access 
is "streamed" = coalesced 

§  Hence, "stream programming 
architecture" 

GeForce 7800 GTX Pentium 4 
G
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number of arithmetic operations

amount of transferred bytes
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How to Achieve Coalesced Access 

§  Addresses from a warp (“thread-vector”) are converted into line 
requests 

§  line sizes: 32B and 128B 

§  Goal is to maximally utilize the bytes in these lines 
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2D Array Access Pattern (row major) 

§  Consider the following piece in a kernel (e.g., matrix × vector): 

Ø Uncoalesced access pattern: 
§  Elements read on 1st SIMT access: 0, 32, 64, … 
§  Elements read on 2nd SIMT access: 1, 33, 65, … 
§  Also, extra data will be transferred in order to fill the cache line size 

§  Generally, most natural access pattern for direct port of a C/C++ code! 

for ( int j = 0; j < 32; j ++ ) { 
   float x = A[treadIdx.x][j]; 
   ... do something with it ... 
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Transposed 2D Array Access Pattern 

§  The "natural" way to store matrices is called row major order 

§  Column major := store a logical row in a physical column 

§  I.e., A00 → A[0][0] , A01 → A[1][0] , A02 → A[2][0] , … 
       A10 → A[0][1] , A11 → A[1][1] , A12 → A[2][1] , … 
       A20 → A[0][2] , … 

§  Transform the code piece (e.g., row×column) to column major: 

 
§  Now, we have coalesced accesses: 

§  Elements read on 1st SIMT access: 0, 1, 2, …, 31 
§  Elements  

read on 2nd  
SIMT access:  
32, 33, …, 63 

for ( int j = 0; j < 32; j ++ ){ 
   float x = A[j][treadIdx.x]; 
   ... do something with it ... 
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Array of Structure  or  Structure of Array? 

§  An array of structures (AoS)  
behaves like 
row major accesses: 

 

 

§  A structure of arrays (SoA)  
behaves like  
column major access: 

struct Point {  
   float x; float y; float z; 
}; 
Point PointList[N]; 
... 
PointList[threadIdx.x].x = ... 

struct PointList {  
   float x[N];  
   float y[N];  
   float z[N]; 
}; 
... 
PointList.x[threadIdx.x] = ... 
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Simulating Heat Transfer in Solid Bodies 

§  Assumptions: 

§  For sake of illustration, our domain is 2D 

§  Discrete domain → 2D grid  
(common approach in simulation) 

§  A few designated cells are "heat sources" 
→ cells with constant temperature 

§  Simulation model (simplistic): 

§  Iterate this (e.g., until convergence to steady-state) 

T n+1
i ,j = T n

i ,j +
X

(k,l)2N(i ,j)

µ(T n
k,l � T n

i ,j)

T n+1
i ,j = (1� Nµ)T n

i ,j + µ
X

(k,l)2N(i ,j)

T n
k,l (1) ⇔ 

N = number of cells in the neighborhood 
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§  Do we achieve energy conservation? 

§  For sake of simplicity, assume 

 

§  Energy consumption iff 

§  Plugging (1) into (2) yields 

§  Therefore, μ is indeed a free material parameter (= "heat flow speed") 

i,j N(i,j) = 

X

i ,j

T n+1
i ,j

!
=

X

i ,j

T n
i ,j

(2) 
(1� Nµ)

X

i ,j

T n
i ,j + µ

X

i ,j

X

(k,l)2N(i ,j)

T n
k,l

!
=

X

i ,j

T n
i ,j

= 0 
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§  Example: heat simulation of ICs and cooling elements  
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Pattern: Double Buffering 

§  Observations: 

§  Each cell's next state can be computed completely independently 

Ø We can arrange our computations like this: 

§  General parallel programming pattern:  
double buffering ("ping pong") 

Stream
 (grid) 

Kernel (one iteration) 

Stream
 (grid) 

Stream
 (grid) 

Kernel (one iteration) 

Stream
 A 

Stream
 B 

1., 3., … iteration 

2., 4., … iteration 
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Algorithm 

§  One thread per cell 

1.  Kernel for re-setting heat sources: 

2.  Kernel for one transfer step: 

3.  Swap pointers to input & output grid (done on host) 

§  Challenge: border cells! (very frequent problem in sim. codes) 

§  Use if-then-else in above kernel? 

§  Use extra kernel that is run only for border cells? 

§  Introduce padding around domain? Arrange domain as torus? 

if ( cell is heat cell ): 
   read temperature from constant "heating stencil" 

Read all neighbor cells  input_grid[tid.x+-1][tid.y+-1] 
Accumulate them 
Write new temperature in output_grid[tid.x][tid.y] 
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Texture Memory 

§  Many computations have the following characteristics: 

§  They iterate a simple function many times 

§  They work on a 2D/3D grid 

§ We can run one thread per grid cell 

§  Each thread only needs to look at neighbor cells 

§  Each iteration transforms an input grid into an output grid 

§  For this kind of algorithms, there is texture memory: 

§  Special cache with optimization for spatial locality 

§  Access to neighbor cells is very fast 

§  Important: can handle out-of-border accesses  
automatically by clamping or wrap-around! 

§  For the technical details: see "Cuda by Example",  
Nvidia's "CUDA C Programming Guide",  

SEGFAULT	   SEGFAULT	  

SEGFAULT	   SEGFAULT	  

SEGFAULT	  

SEGFAULT	  

SEGFAULT	  

SEGFAULT	  

SEGFAULT	  

SEGFAULT	  

…	   …	  

…	  

…	  

Gout 

Gin 
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§  The locality-preserving cache is probably achieved by arranging 
data via a space-filling curve: 

66&

Texture%Memory%

reorder&the&block&index&fiing&into&zOorder&to&
take&advantage&of&texture&L1&cache&&
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Other Applications of Texture Memory 

§  Most image processing algorithms exhibit this kind of locality 

§  Trivial example: image addition / subtraction ⟶ neighboring 
threads access neighboring pixels 

Im
age t=1 

Im
age t=2 

Im
g 

1 
+ 

Im
g 

2 
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g 2 – Im
g 1 
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CUDA's Memory Hierarchy 
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Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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CUDA Variable Type Qualifiers 

§  Remarks: 
§ __device__ is optional when used with __local__,  __shared__, 

or  __constant__ 
§ Automatic variables without any qualifier reside in a register 

-  Except arrays, which reside in local memory (slow) 

Variable declaration Memory Access Lifetime 
__device__ __local__    int LocalVar; local thread thread 
__device__ __shared__   int SharedVar; shared block block 
__device__              int GlobalVar; global grid application 
__device__ __constant__ int ConstantVar; constant grid application 
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CUDA Variable Type Performance 

§  scalar variables reside in fast, on-chip registers 

§  shared variables reside in fast, on-chip memories 

§  thread-local arrays & global variables reside in uncached off-chip 
memory 

§  constant variables reside in cached off-chip memory 

Variable declaration Memory Penalty 
             int var; register 1x 
             int array_var[10]; local 100x 
__shared__   int shared_var; shared 1x 
__device__   int global_var; global 100x 
__constant__ int constant_var; constant 1x 
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Where to Declare Variables? 

Can host access it? 

Outside of  
any function In the kernel 

yes no 
global or 
constant 

register (auto), or 
shared, or 
local 
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Massively Parallel Histogramm Computation 

§  Definition (for images): 

§  Applications: many! 

§  Huffman Compression (see Info 2) 

§  Image Equalization (see Advanced Computer Graphics) 

x ⇥ 0, . . . , L� 1 L = # levels

h(x) = # pixels with level x

Score achieved in exam 

N
um
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f s
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§  The sequential algorithm: 

unsigned char input[MAX_INP_SIZE];// e.g. image 
int input_size;                   // # valid chars in input 
unsigned int histogram[256];      // 256 ASCII chars 
 

// clear histogram 
for (int i = 0; i < 256; i ++ ) 
   histogram[i] = 0; 
for (int i = 0; i < input_size; i ++ ) 
   histogram[ input[i] ] ++ ;     // real histogram comput. 
 

// verify histogram 
long int total_count = 0; 
for (int i = 0; i < 256; i ++ ) 
   total_count += histogram[i]; 
if ( total_count != input_size ) 
   fprintf(stderr, "Error! ..." ); 
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§  Naïve "massively parallel" algorithm: 

§ One thread per bin (e.g., 256) 

§  Each thread scans the complete input and counts the number of 
occurrences of its "own" character 

§  At the end, each thread stores its character count in its histogram slot 

§  Disadvantage: not so massively parallel … 
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§  New approach: one thread per input character 

§  The setup on the host side: 

§  Notes: 

§  Letting threadsPerBlock = 256 makes things much easier in our 
case here 

§  Letting nBlocks = (number of multiprocessors [SMXs] on the device) 
* 2 is a good rule of thumb, YMMV 

§ On current hardware (Kepler) →  ~ 16384 threads 

set up device arrays d_input, d_histogram 
cudaMemset( d_histogram, 0, 256 * sizeof(int) ); 
int threadsPerBlock = 256; 
int nBlocks = #(multiprocessors on device) * 2; 
computeHistogram <<< nBlocks, threadsPerBlock  >>>  
                 ( d_input, input_size, d_histogram ); 
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§  The kernel on the device side: 

§  Problem: race condition!! 

__global__ void 
computeHistogram( unsigned char * input,  
                  long int input_size,  
                  unsigned int histogram[256] ) 
{ 
   int i = threadIdx.x + blockIdx.x * blockDim.x; 
   int stride = blockDim.x * gridDim.x; 
   while ( i < input_size ) 
   { 
      histogram[ input[i] ] += 1; 
      i += stride; 
   } 
} 
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Solution: Atomic Operations 

§  The kernel with atomic add: 

§  Prototype of atomicAdd(): 

§ where T can be int, float  (and few others) 

__global__ void 
computeHistogram( unsigned char * input,  
                  long int input_size,  
                  unsigned int histogram[256] ) 
{ 
   int i = threadIdx.x + blockIdx.x * blockDim.x; 
   int stride = blockDim.x * gridDim.x; 
   while ( i < input_size ) 
   { 
      atomicAdd( & histogram[input[i]], 1 ); 
      i += stride; 
   } 
} 

T atomicAdd( T * address, T val ) 
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§  Semantic: while atomicAdd performs its operation on address, no 
other thread can access this memory location! (neither read, nor 
write) 

§  Problem: this algorithm is much slower than the sequential one! 

§  Lesson: always measure performance against CPU! 

§  Cause: congestion 

§  Lots of threads waiting for a few  
memory locations to become available 
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§  Remedy: partial histograms in shared memory 

§  Note: now it's obvious why we chose 256 threads/block 

computeHistogram( unsigned char * input,  
                  long int input_size,  
                  unsigned int histogram[256] ) 
{ 
   __shared__ unsigned int partial_histo[256]; 
 

   partial_histo[ threadIdx.x ] = 0; 
   __syncthreads(); 
 

   int i = threadIdx.x + blockIdx.x * blockDim.x; 
   int stride = blockDim.x * gridDim.x; 
   while ( i < input_size ) { 
      atomicAdd( & partial_histo[input[i]], 1 ); 
      i += stride; 
   } 
   __syncthreads(); 
   atomicAdd( & histogram[threadIdx.x],  
              partial_histo[input[i]], 1 ); 
} 



G. Zachmann 121 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS 

§  All programming languages / libraries / environments providing 
for some kind of parallelism/concurrency have one or more of 
these atomic operations: 

§  int atomicExch( int* address, int val ): 
Read old value at address, store val in address, return old value 

§  int atomicMin( int* address, int val ): 
Read old value at address, compute minimum of old and val, store 
result in address, return old value 

§  int atomicAnd( int* address, int val ); 

§  Atomic add 

§  And atomic compare-and-swap … 

More Atomic Operations 
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§  The fundamental atomic operation "Compare And Swap": 

§  In CUDA: int atomicCAS( int* address, int compare, int val ) 

§  Performs this little algorithm atomically: 

§  Theorem (w/o proof):  
All other atomic operations can be implemented using atomic 
compare-and-swap. 

atomic_compare_and_swap( address, compare, new_val ): 

   old ← value in memory location address 
   if compare == old: 

      store new_val → memory location address 
   return old 
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§  Example: 

atomic_add( address, incr ): 
   current_val := value in memory location address 
   repeat 
      new_val     := current_val + incr 
      assumed_val := current_val 
      current_val := compare_and_swap( address,  
                                       assumed_val, 
                                       new_val ) 
   until assumed_val == current_val  
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Image Restoration Using Histograms 
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Advanced GPU & Bus Utilization 

§  Problem with performance, if lots of transfer between GPU⟷CPU: 

Transfer A Transfer B Vector Add Tranfer C 

Only use one transfer direction, 
GPU idle 

Bus idle Only use one  
transfer direction, 

GPU idle 
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§  Solution: pipelining (the "other" parallelism paradigm) 

§  Is called 
"device 
overlap" 
in CUDA parlance 

§  Requires two CUDA techniques 
called "streams" and "asychronous 
memcpy" 

Trans 
A.1 

Trans 
B.1 

Trans 
C.1 
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A.2 
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For More Information on CUDA … 

§  CUDA C Programming Guide (zur Programmiersprache) 

§  CUDA C Best Practices Guide (zur Performance-Steigerung) 

§  /Developer/NVIDIA/CUDA-5.0/doc/html/index.html  
(zum Runtime API) 
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Concepts we Have Not Covered Here 

§  Dynamic parallelism (threads can launch 
new threads) 

§  Good for irregular data parallelism (e.g., tree 
traversal, multi-grids) 

§  Running several tasks at the same time on 
a GPU (via MPI; they call it "Hyper-Q") 

 

§  See: 

§  "Introduction to CUDA 5.0" on the course 
web page 

§  "CUDA C Programming Guide" at 
docs.nvidia.com/cuda/index.html  
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§  Graphics Interoperability: 

§  Transfer images directly from CUDA memory to OpenGL's framebuffer 

§  Dynamic shared memory 

§  Asynchronous memory copies between host ⟷ device 

§  Dynamic memory allocation in the kernel 

§  Can have serious performance issues 

§  Pinned CPU memory ( 

§  CUDA Streams 

§  Multi-GPU programming, GPU-to-GPU memory transfer 

§  Zero-copy data transfer 

§  Libraries: CUBLAS, Thrust, … 

§  Voting functions ( __all(), __any() ) 
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§  With Graphics Interoperability, you can render results from CUDA 
directly in a 3D scene, e.g. by using them as textures 

Demo in  demos/shader/mandelbrot 
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