
G. Zachmann 82 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Application of Dot Product: Document Similarity

§  Task: compute "similarity" of documents (think Google)

§ One of the fundamental tasks in information retrieval (IR)

§  Example: search engine / database of scientific papers needs to
suggest similar papers for a given one

§  Assumption: all documents are over a given, fixed vocabulary V
consisting of N words (e.g., all English words)

§  Consequence: set of words, V, occurring in the docs is known & fixed

§  Assumption: don't consider word order → bag of words model

§  Consequence: "John is quicker than Mary" = "Mary is quicker than John"

G. Zachmann 83 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Representation of a document D:

§  For each word w∈V: determine f(w) = frequency of word w in D

§  Example:

§  Fix a word order in V = (v1, v2, v3, …, vN) (in principle, any order will do)

§  Represent D as a vector in RN:

§  Note: our vector space is HUGE (N ~ 100,000 – 10,000,000)

§  For each word w, there is one axis in our vector space!

Anthony &
Cleopatra

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

ANTHONY
BRUTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER
...

157
4

232
0

57
2
2

...

73
157
227

10
0
0
0

...

0
0
0
0
0
3
1

...

0
2
2
0
0
8
1

...

0
0
1
0
0
5
1

...

1
0
0
0
0
8
5

...

D =
�
f (v1), f (v2), f (v3), . . . , f (vN)

�

G. Zachmann 84 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Define similarity s between documents
D1 and D2 as

§  This similarity measure is called "vector space model"

§ One of the most frequently used similarity measures in IR

§  Note: our definition is a slightly simplified version of the commonly
used one (we omitted the tf-idf weighting)

RICH

s(D1,D2) =
D1 ·D2

kD1k·kD2k
= cos(D1,D2)

G. Zachmann 85 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Why not the Euclidean distance ?

§ Otherwise: documents D, and D concatenated to itself would be very
dissimilar!

§  Why do we need the normalization by ?

§  Same reason …

kD1 � D2k

1
kD1k·kD2k

G. Zachmann 86 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Parallel Reduction Revisited

§  Why didn't we do the reduction this way?

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

0 2 4 6 8 10 12 14

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

0 4 8 12

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

0 8

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

TIDs

TIDs

TIDs

TIDs

G. Zachmann 87 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  The kernel for this algorithm:

// do reduction in shared mem
__syncthreads();
for (int i = 1; i < blockDim.x; i *= 2)
{
 if (threadIdx.x % (2*i) == 0)
 cache[threadIdx.x] += cache[threadIdx.x + i];
 __syncthreads();
}

Problem:
highly
divergent
warps are
very inefficient

G. Zachmann 88 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

A Common, Massively Parallel Programming Pattern

§  Partition your domain such that each subset fits into shared memory;
handle each data subset with one thread block

G. Zachmann 89 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Load the subset from global memory to shared memory; exploit
memory-level parallelism by loading one piece per thread; don't forget
to synchronize all threads before continuing!

G. Zachmann 90 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Perform the computation on the subset in shared memory

G. Zachmann 91 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Copy the result from shared memory back to global memory

G. Zachmann 92 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Remarks on Memory (Applies to GPUs and CPUs)

§  In our dot product kernel, we could have done everything in
global memory, but …

§  Global memory bandwidth is loooow:

Ideal Reality

G. Zachmann 93 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Coalesced	 Memory	 Access

§  One of the most important optimization techniques for massively
parallel algorithm design (on GPUs and — to some degree — CPUs!)

Coalesced	 memory	 accesses	 Uncoalesced	 memory	 accesses	

G. Zachmann 94 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  When does the GPU win over the CPU?

§  Arithmetic intensity of an algorithm :=

§  Sometimes also called computational intensity

§  Unfortunately, many (most?) algorithms have a low arithmetic
intensity → they are bandwidth limited

§  GPU wins if memory access
is "streamed" = coalesced

§  Hence, "stream programming
architecture"

GeForce 7800 GTX Pentium 4
G

by
te

s/
se

c
0

10

20

30

40

50

Cache Seq Rand Cache Seq Rand

number of arithmetic operations

amount of transferred bytes

G. Zachmann 95 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

How to Achieve Coalesced Access

§  Addresses from a warp (“thread-vector”) are converted into line
requests

§  line sizes: 32B and 128B

§  Goal is to maximally utilize the bytes in these lines

G. Zachmann 96 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

2D Array Access Pattern (row major)

§  Consider the following piece in a kernel (e.g., matrix × vector):

Ø Uncoalesced access pattern:
§  Elements read on 1st SIMT access: 0, 32, 64, …
§  Elements read on 2nd SIMT access: 1, 33, 65, …
§  Also, extra data will be transferred in order to fill the cache line size

§  Generally, most natural access pattern for direct port of a C/C++ code!

for (int j = 0; j < 32; j ++) {
 float x = A[treadIdx.x][j];
 ... do something with it ...

G. Zachmann 97 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Transposed 2D Array Access Pattern

§  The "natural" way to store matrices is called row major order

§  Column major := store a logical row in a physical column

§  I.e., A00 → A[0][0] , A01 → A[1][0] , A02 → A[2][0] , …
 A10 → A[0][1] , A11 → A[1][1] , A12 → A[2][1] , …
 A20 → A[0][2] , …

§  Transform the code piece (e.g., row×column) to column major:

§  Now, we have coalesced accesses:

§  Elements read on 1st SIMT access: 0, 1, 2, …, 31
§  Elements

read on 2nd
SIMT access:
32, 33, …, 63

for (int j = 0; j < 32; j ++){
 float x = A[j][treadIdx.x];
 ... do something with it ...

G. Zachmann 98 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Array of Structure or Structure of Array?

§  An array of structures (AoS)
behaves like
row major accesses:

§  A structure of arrays (SoA)
behaves like
column major access:

struct Point {
 float x; float y; float z;
};
Point PointList[N];
...
PointList[threadIdx.x].x = ...

struct PointList {
 float x[N];
 float y[N];
 float z[N];
};
...
PointList.x[threadIdx.x] = ...

G. Zachmann 99 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Simulating Heat Transfer in Solid Bodies

§  Assumptions:

§  For sake of illustration, our domain is 2D

§  Discrete domain → 2D grid
(common approach in simulation)

§  A few designated cells are "heat sources"
→ cells with constant temperature

§  Simulation model (simplistic):

§  Iterate this (e.g., until convergence to steady-state)

T n+1
i ,j = T n

i ,j +
X

(k,l)2N(i ,j)

µ(T n
k,l � T n

i ,j)

T n+1
i ,j = (1� Nµ)T n

i ,j + µ
X

(k,l)2N(i ,j)

T n
k,l (1) ⇔

N = number of cells in the neighborhood

G. Zachmann 100 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Do we achieve energy conservation?

§  For sake of simplicity, assume

§  Energy consumption iff

§  Plugging (1) into (2) yields

§  Therefore, μ is indeed a free material parameter (= "heat flow speed")

i,j N(i,j) =

X

i ,j

T n+1
i ,j

!
=

X

i ,j

T n
i ,j

(2)
(1� Nµ)

X

i ,j

T n
i ,j + µ

X

i ,j

X

(k,l)2N(i ,j)

T n
k,l

!
=

X

i ,j

T n
i ,j

= 0

G. Zachmann 101 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Example: heat simulation of ICs and cooling elements

G. Zachmann 102 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Pattern: Double Buffering

§  Observations:

§  Each cell's next state can be computed completely independently

Ø We can arrange our computations like this:

§  General parallel programming pattern:
double buffering ("ping pong")

Stream
 (grid)

Kernel (one iteration)

Stream
 (grid)

Stream
 (grid)

Kernel (one iteration)

Stream
 A

Stream
 B

1., 3., … iteration

2., 4., … iteration

G. Zachmann 103 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Algorithm

§  One thread per cell

1.  Kernel for re-setting heat sources:

2.  Kernel for one transfer step:

3.  Swap pointers to input & output grid (done on host)

§  Challenge: border cells! (very frequent problem in sim. codes)

§  Use if-then-else in above kernel?

§  Use extra kernel that is run only for border cells?

§  Introduce padding around domain? Arrange domain as torus?

if (cell is heat cell):
 read temperature from constant "heating stencil"

Read all neighbor cells input_grid[tid.x+-1][tid.y+-1]
Accumulate them
Write new temperature in output_grid[tid.x][tid.y]

G. Zachmann 104 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Texture Memory

§  Many computations have the following characteristics:

§  They iterate a simple function many times

§  They work on a 2D/3D grid

§ We can run one thread per grid cell

§  Each thread only needs to look at neighbor cells

§  Each iteration transforms an input grid into an output grid

§  For this kind of algorithms, there is texture memory:

§  Special cache with optimization for spatial locality

§  Access to neighbor cells is very fast

§  Important: can handle out-of-border accesses
automatically by clamping or wrap-around!

§  For the technical details: see "Cuda by Example",
Nvidia's "CUDA C Programming Guide",

SEGFAULT	 SEGFAULT	

SEGFAULT	 SEGFAULT	

SEGFAULT	

SEGFAULT	

SEGFAULT	

SEGFAULT	

SEGFAULT	

SEGFAULT	

…	 …	

…	

…	

Gout

Gin

G. Zachmann 105 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  The locality-preserving cache is probably achieved by arranging
data via a space-filling curve:

66&

Texture%Memory%

reorder&the&block&index&fiing&into&zOorder&to&
take&advantage&of&texture&L1&cache&&

G. Zachmann 106 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Other Applications of Texture Memory

§  Most image processing algorithms exhibit this kind of locality

§  Trivial example: image addition / subtraction ⟶ neighboring
threads access neighboring pixels

Im
age t=1

Im
age t=2

Im
g

1
+

Im
g

2
Im

g 2 – Im
g 1

G. Zachmann 107 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

CUDA's Memory Hierarchy

G. Zachmann 108 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

G. Zachmann 109 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

CUDA Variable Type Qualifiers

§  Remarks:
§ __device__ is optional when used with __local__, __shared__,

or __constant__
§ Automatic variables without any qualifier reside in a register

-  Except arrays, which reside in local memory (slow)

Variable declaration Memory Access Lifetime
__device__ __local__ int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

G. Zachmann 110 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

CUDA Variable Type Performance

§  scalar variables reside in fast, on-chip registers

§  shared variables reside in fast, on-chip memories

§  thread-local arrays & global variables reside in uncached off-chip
memory

§  constant variables reside in cached off-chip memory

Variable declaration Memory Penalty
 int var; register 1x
 int array_var[10]; local 100x
__shared__ int shared_var; shared 1x
__device__ int global_var; global 100x
__constant__ int constant_var; constant 1x

G. Zachmann 111 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Where to Declare Variables?

Can host access it?

Outside of
any function In the kernel

yes no
global or
constant

register (auto), or
shared, or
local

G. Zachmann 113 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Massively Parallel Histogramm Computation

§  Definition (for images):

§  Applications: many!

§  Huffman Compression (see Info 2)

§  Image Equalization (see Advanced Computer Graphics)

x ⇥ 0, . . . , L� 1 L = # levels

h(x) = # pixels with level x

Score achieved in exam

N
um

be
r o

f s
tu

de
nt

s

G. Zachmann 114 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  The sequential algorithm:

unsigned char input[MAX_INP_SIZE];// e.g. image
int input_size; // # valid chars in input
unsigned int histogram[256]; // 256 ASCII chars

// clear histogram
for (int i = 0; i < 256; i ++)
 histogram[i] = 0;
for (int i = 0; i < input_size; i ++)
 histogram[input[i]] ++ ; // real histogram comput.

// verify histogram
long int total_count = 0;
for (int i = 0; i < 256; i ++)
 total_count += histogram[i];
if (total_count != input_size)
 fprintf(stderr, "Error! ...");

G. Zachmann 115 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Naïve "massively parallel" algorithm:

§ One thread per bin (e.g., 256)

§  Each thread scans the complete input and counts the number of
occurrences of its "own" character

§  At the end, each thread stores its character count in its histogram slot

§  Disadvantage: not so massively parallel …

G. Zachmann 116 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  New approach: one thread per input character

§  The setup on the host side:

§  Notes:

§  Letting threadsPerBlock = 256 makes things much easier in our
case here

§  Letting nBlocks = (number of multiprocessors [SMXs] on the device)
* 2 is a good rule of thumb, YMMV

§ On current hardware (Kepler) → ~ 16384 threads

set up device arrays d_input, d_histogram
cudaMemset(d_histogram, 0, 256 * sizeof(int));
int threadsPerBlock = 256;
int nBlocks = #(multiprocessors on device) * 2;
computeHistogram <<< nBlocks, threadsPerBlock >>>
 (d_input, input_size, d_histogram);

G. Zachmann 117 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  The kernel on the device side:

§  Problem: race condition!!

__global__ void
computeHistogram(unsigned char * input,
 long int input_size,
 unsigned int histogram[256])
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * gridDim.x;
 while (i < input_size)
 {
 histogram[input[i]] += 1;
 i += stride;
 }
}

G. Zachmann 118 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Solution: Atomic Operations

§  The kernel with atomic add:

§  Prototype of atomicAdd():

§ where T can be int, float (and few others)

__global__ void
computeHistogram(unsigned char * input,
 long int input_size,
 unsigned int histogram[256])
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * gridDim.x;
 while (i < input_size)
 {
 atomicAdd(& histogram[input[i]], 1);
 i += stride;
 }
}

T atomicAdd(T * address, T val)

G. Zachmann 119 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Semantic: while atomicAdd performs its operation on address, no
other thread can access this memory location! (neither read, nor
write)

§  Problem: this algorithm is much slower than the sequential one!

§  Lesson: always measure performance against CPU!

§  Cause: congestion

§  Lots of threads waiting for a few
memory locations to become available

G. Zachmann 120 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Remedy: partial histograms in shared memory

§  Note: now it's obvious why we chose 256 threads/block

computeHistogram(unsigned char * input,
 long int input_size,
 unsigned int histogram[256])
{
 __shared__ unsigned int partial_histo[256];

 partial_histo[threadIdx.x] = 0;
 __syncthreads();

 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * gridDim.x;
 while (i < input_size) {
 atomicAdd(& partial_histo[input[i]], 1);
 i += stride;
 }
 __syncthreads();
 atomicAdd(& histogram[threadIdx.x],
 partial_histo[input[i]], 1);
}

G. Zachmann 121 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  All programming languages / libraries / environments providing
for some kind of parallelism/concurrency have one or more of
these atomic operations:

§  int atomicExch(int* address, int val):
Read old value at address, store val in address, return old value

§  int atomicMin(int* address, int val):
Read old value at address, compute minimum of old and val, store
result in address, return old value

§  int atomicAnd(int* address, int val);

§  Atomic add

§  And atomic compare-and-swap …

More Atomic Operations

G. Zachmann 122 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  The fundamental atomic operation "Compare And Swap":

§  In CUDA: int atomicCAS(int* address, int compare, int val)

§  Performs this little algorithm atomically:

§  Theorem (w/o proof):
All other atomic operations can be implemented using atomic
compare-and-swap.

atomic_compare_and_swap(address, compare, new_val):

 old ← value in memory location address
 if compare == old:

 store new_val → memory location address
 return old

G. Zachmann 123 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Example:

atomic_add(address, incr):
 current_val := value in memory location address
 repeat
 new_val := current_val + incr
 assumed_val := current_val
 current_val := compare_and_swap(address,
 assumed_val,
 new_val)
 until assumed_val == current_val

G. Zachmann 124 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Image Restoration Using Histograms

G. Zachmann 125 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Advanced GPU & Bus Utilization

§  Problem with performance, if lots of transfer between GPU⟷CPU:

Transfer A Transfer B Vector Add Tranfer C

Only use one transfer direction,
GPU idle

Bus idle Only use one
transfer direction,

GPU idle

G. Zachmann 126 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Solution: pipelining (the "other" parallelism paradigm)

§  Is called
"device
overlap"
in CUDA parlance

§  Requires two CUDA techniques
called "streams" and "asychronous
memcpy"

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

G. Zachmann 127 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

For More Information on CUDA …

§  CUDA C Programming Guide (zur Programmiersprache)

§  CUDA C Best Practices Guide (zur Performance-Steigerung)

§  /Developer/NVIDIA/CUDA-5.0/doc/html/index.html
(zum Runtime API)

G. Zachmann 128 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

Concepts we Have Not Covered Here

§  Dynamic parallelism (threads can launch
new threads)

§  Good for irregular data parallelism (e.g., tree
traversal, multi-grids)

§  Running several tasks at the same time on
a GPU (via MPI; they call it "Hyper-Q")

§  See:

§  "Introduction to CUDA 5.0" on the course
web page

§  "CUDA C Programming Guide" at
docs.nvidia.com/cuda/index.html

G. Zachmann 131 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  Graphics Interoperability:

§  Transfer images directly from CUDA memory to OpenGL's framebuffer

§  Dynamic shared memory

§  Asynchronous memory copies between host ⟷ device

§  Dynamic memory allocation in the kernel

§  Can have serious performance issues

§  Pinned CPU memory (

§  CUDA Streams

§  Multi-GPU programming, GPU-to-GPU memory transfer

§  Zero-copy data transfer

§  Libraries: CUBLAS, Thrust, …

§  Voting functions (__all(), __any())

G. Zachmann 132 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

§  With Graphics Interoperability, you can render results from CUDA
directly in a 3D scene, e.g. by using them as textures

Demo in demos/shader/mandelbrot

G. Zachmann 133 Fundamental Algos & Introduction to CUDA Massively Parallel Algorithms 15 May 2013 SS

