Application of Dot Product: Document Similarity

Task: compute "similarity" of documents (think Google)

Bremen

U

- One of the fundamental tasks in information retrieval (IR)
- Example: search engine / database of scientific papers needs to suggest similar papers for a given one
- Assumption: all documents are over a given, fixed vocabulary V consisting of N words (e.g., all English words)
 - Consequence: set of words, V, occurring in the docs is known & fixed
- Assumption: don't consider word order \rightarrow bag of words model
 - Consequence: "John is quicker than Mary" = "Mary is quicker than John"

• Representation of a document *D*:

• For each word $w \in V$: determine f(w) = frequency of word w in D

Example:		Anthony & Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
		157 4	73 157	0	0	0	1
	CAESAR	232	227	0	2	1	0
	CALPURNIA	0	10	0	0	0	0
	CLEOPATRA	57	0	0	0	0	0
	MERCY	2	0	3	8	5	8
	WORSER	2	0	1	1	1	5

- Fix a word order in $V = (v_1, v_2, v_3, ..., v_N)$ (in principle, any order will do)
- Represent *D* as a vector in \mathbf{R}^N :

$$D = (f(v_1), f(v_2), f(v_3), \ldots, f(v_N))$$

- Note: our vector space is HUGE (N ~ 100,000 10,000,000)
 - For each word *w*, there is one axis in our vector space!

Define similarity s between documents
 D₁ and D₂ as

$$s(D_1, D_2) = rac{D_1 \cdot D_2}{\|D_1\| \cdot \|D_2\|} = \cos(D_1, D_2)$$

- This similarity measure is called "vector space model"
 - One of the most frequently used similarity measures in IR
- Note: our definition is a slightly simplified version of the commonly used one (we omitted the tf-idf weighting)

- Why not the Euclidean distance $||D_1 D_2||$?
 - Otherwise: documents D, and D concatenated to itself would be very dissimilar!

- Why do we need the normalization by $\frac{1}{\|D_1\| \|D_2\|}$?
 - Same reason ...

• Why didn't we do the reduction this way?

A Common, Massively Parallel Programming Pattern

88

I I I I I I I I I I I I I I I I I I I	
the second secon	

 Partition your domain such that each subset fits into shared memory; handle each data subset with one thread block

Load the subset from global memory to shared memory; exploit memory-level parallelism by loading one piece per thread; don't forget to synchronize all threads before continuing!

Perform the computation on the subset in shared memory

Copy the result from shared memory back to global memory

Bremen

W

000000

92

- In our dot product kernel, we could have done everything in
 - global memory, but ...
- Global memory bandwidth is loooow:

Reality

 One of the most important optimization techniques for massively parallel algorithm design (on GPUs and — to some degree — CPUs!)

Coalesced memory accesses

Uncoalesced memory accesses

May 2013

SS

- When does the GPU win over the CPU?
- Arithmetic intensity of an algorithm := <u>number of arithmetic operations</u> <u>amount of transferred bytes</u>
 - Sometimes also called computational intensity
- Unfortunately, many (most?) algorithms have a low arithmetic intensity → they are bandwidth limited
- GPU wins if memory access
 is "streamed" = coalesced
 - Hence, "stream programming architecture"

- Addresses from a warp ("thread-vector") are converted into line requests
 - Ine sizes: 32B and 128B

Bremen

Goal is to maximally utilize the bytes in these lines

2D Array Access Pattern (row major)

Consider the following piece in a kernel (e.g., matrix × vector):

```
for ( int j = 0; j < 32; j ++ ) {
    float x = A[treadIdx.x][j];
    ... do something with it ...</pre>
```


Uncoalesced access pattern:

Bremen

W

- Elements read on 1st SIMT access: 0, 32, 64, ...
- Elements read on 2nd SIMT access: 1, 33, 65, ...
- Also, extra data will be transferred in order to fill the cache line size
- Generally, most natural access pattern for direct port of a C/C++ code!

Transposed 2D Array Access Pattern

Bremen

W

- The "natural" way to store matrices is called row major order
- Column major := store a logical row in a physical column

• I.e.,
$$A_{00} \rightarrow A[0][0]$$
, $A_{01} \rightarrow A[1][0]$, $A_{02} \rightarrow A[2][0]$, ...
 $A_{10} \rightarrow A[0][1]$, $A_{11} \rightarrow A[1][1]$, $A_{12} \rightarrow A[2][1]$, ...
 $A_{20} \rightarrow A[0][2]$, ...

Transform the code piece (e.g., row×column) to column major:

```
for ( int j = 0; j < 32; j ++ ) {
   float x = A[j][treadIdx.x];
    ... do something with it ...</pre>
```

- Now, we have coalesced accesses:
 - Elements read on 1st SIMT access: 0, 1, 2, ..., 31

- An array of structures (AoS) struct Point { float x; float y; float z; behaves like }; row major accesses: Point PointList[N]; . . . PointList[threadIdx.x].x = ... 224 256 288 320 352 384 416 32 64 96 128 160 192
- A structure of arrays (SoA) behaves like column major access:

Fundamental Algos & Introduction to CUDA 99

(1)

N = number of cells in the neighborhood

 $T_{i,i}^{n+1} = T_{i,i}^{n} + \sum \mu(T_{k,i}^{n} - T_{i,j}^{n})$

 $(k,l) \in N(i,j)$

 $(k,l) \in N(i,j)$

 $\Leftrightarrow T_{i,i}^{n+1} = (1 - N\mu)T_{i,i}^n + \mu \qquad \sum T_{k,i}^n$

SS

May 2013

Iterate this (e.g., until convergence to steady-state)

G. Zachmann Massively Parallel Algorithms

Assumptions:

rature

• Discrete domain \rightarrow 2D grid

Simulation model (simplistic):

For sake of illustration, our domain is 2D

(common approach in simulation)

Bremen llŰ

Simulating Heat Transfer in Solid Bodies

- Do we achieve energy conservation?
- For sake of simplicity, assume

• Energy consumption iff
$$\sum_{i,j} T_{i,j}^{n+1} \stackrel{!}{=} \sum_{i,j} T_{i,j}^{n}$$

Plugging (1) into (2) yields

$$(1 - N\mu) \sum_{i,j} T_{i,j}^{n} + \mu \sum_{i,j} \sum_{(k,l) \in N(i,j)} T_{k,l}^{n} \stackrel{!}{=} \sum_{i,j} T_{i,j}^{n}$$

Therefore, μ is indeed a free material parameter (= "heat flow speed")

Example: heat simulation of ICs and cooling elements

Pattern: Double Buffering

- Observations:
 - Each cell's next state can be computed completely independently
- > We can arrange our computations like this:

 General parallel programming pattern: double buffering ("ping pong")

- One thread per cell
- 1. Kernel for re-setting heat sources:

```
if ( cell is heat cell ):
    read temperature from constant "heating stencil"
```

2. Kernel for one transfer step:

```
Read all neighbor cells input_grid[tid.x+-1][tid.y+-1]
Accumulate them
Write new temperature in output_grid[tid.x][tid.y]
```

- 3. Swap pointers to input & output grid (done on host)
- Challenge: border cells! (very frequent problem in sim. codes)
 - Use if-then-else in above kernel?
 - Use extra kernel that is run only for border cells?
 - Introduce padding around domain? Arrange domain as torus?

Texture Memory

Bremen

U

- Many computations have the following characteristics:
 - They iterate a simple function many times
 - They work on a 2D/3D grid
 - We can run one thread per grid cell
 - Each thread only needs to look at neighbor cells
 - Each iteration transforms an input grid into an output grid
- For this kind of algorithms, there is texture memory:
 - Special cache with optimization for spatial locality
 - Access to neighbor cells is very fast
 - Important: can handle out-of-border accesses automatically by clamping or wrap-around!
- For the technical details: see "Cuda by Example", Nvidia's "CUDA C Programming Guide",

The locality-preserving cache is probably achieved by arranging data via a space-filling curve:

Other Applications of Texture Memory

- Most image processing algorithms exhibit this kind of locality
- Trivial example: image addition / subtraction → neighboring threads access neighboring pixels

Bremen

W

SS

CUDA's Memory Hierarchy

107

CUDA Variable Type Qualifiers

Variable declaration			Memory	Access	Lifetime
device	_local	<pre>int LocalVar;</pre>	local	thread	thread
device	shared	<pre>int SharedVar;</pre>	shared	block	block
device		<pre>int GlobalVar;</pre>	global	grid	application
device	constant	_ int ConstantVar;	constant	grid	application

- Remarks:
 - device is optional when used with _local__, __shared__, or __constant__
 - Automatic variables without any qualifier reside in a register
 - Except arrays, which reside in local memory (slow)

CUDA Variable Type Performance

Variable declaration	Memory	Penalty	
<pre>int var;</pre>	register	1x	
<pre>int array_var[10];</pre>	local	100x	
shared int shared_var;	shared	1x	
device int global_var;	global	100x	
<pre>constant int constant_var;</pre>	constant	1x	

- scalar variables reside in fast, on-chip registers
- shared variables reside in fast, on-chip memories
- thread-local arrays & global variables reside in uncached off-chip memory
- constant variables reside in cached off-chip memory

000000

Massively Parallel Algorithms May 2013 SS

Massively Parallel Histogramm Computation

Definition (for images):

h(x) = # pixels with level x

- $x \in 0, \ldots, L-1$ L = # levels
- Applications: many!
 - Huffman Compression (see Info 2)
 - Image Equalization (see Advanced Computer Graphics)

W

The sequential algorithm:

- Naïve "massively parallel" algorithm:
 - One thread per bin (e.g., 256)
 - Each thread scans the complete input and counts the number of occurrences of its "own" character
 - At the end, each thread stores its character count in its histogram slot
- Disadvantage: not so massively parallel ...

- New approach: one thread per input character
- The setup on the host side:

Notes:

- Letting threadsPerBlock = 256 makes things much easier in our case here
- Letting nBlocks = (number of multiprocessors [SMXs] on the device)
 * 2 is a good rule of thumb, YMMV
- On current hardware (Kepler) → ~ 16384 threads

The kernel on the device side:

Problem: race condition!!

Solution: Atomic Operations

118

The kernel with atomic add:

Prototype of atomicAdd():

T atomicAdd(T * address, T val)

where T can be int, float (and few others)

- Semantic: while atomicAdd performs its operation on address, no other thread can access this memory location! (neither read, nor write)
- Problem: this algorithm is much slower than the sequential one!
 - Lesson: always measure performance against CPU!
- Cause: congestion
 - Lots of threads waiting for a few memory locations to become available

Remedy: partial histograms in shared memory

```
computeHistogram( unsigned char * input,
                  long int input size,
                  unsigned int histogram[256] )
{
     shared unsigned int partial histo[256];
   partial histo[ threadIdx.x ] = 0;
     syncthreads();
   int i = threadIdx.x + blockIdx.x * blockDim.x;
   int stride = blockDim.x * gridDim.x;
   while ( i < input size ) {</pre>
      atomicAdd( & partial histo[input[i]], 1 );
      i += stride;
     syncthreads();
   atomicAdd( & histogram[threadIdx.x],
              partial histo[input[i]], 1);
```

• Note: now it's obvious why we chose 256 threads/block

More Atomic Operations

- All programming languages / libraries / environments providing for some kind of parallelism/concurrency have one or more of these atomic operations:
 - int atomicExch(int* address, int val):
 Read old value at address, store val in address, return old value
 - int atomicMin(int* address, int val): Read old value at address, compute minimum of old and val, store result in address, return old value
 - int atomicAnd(int* address, int val);
 - Atomic add

Bremen

W

And atomic compare-and-swap ...

- The fundamental atomic operation "Compare And Swap":
 - In CUDA: int atomicCAS (int* address, int compare, int val)
 - Performs this little algorithm atomically:

```
atomic_compare_and_swap( address, compare, new_val ):
    old ← value in memory location address
    if compare == old:
        store new_val → memory location address
    return old
```

Theorem (w/o proof):

All other atomic operations can be implemented using atomic compare-and-swap.

• Example:

Image Restoration Using Histograms

■ Problem with performance, if lots of transfer between GPU↔CPU:

Solution: pipelining (the "other" parallelism paradigm)

For More Information on CUDA ...

Bremen

U

- CUDA C Programming Guide (zur Programmiersprache)
- CUDA C Best Practices Guide (zur Performance-Steigerung)
- /Developer/NVIDIA/CUDA-5.0/doc/html/index.html (zum Runtime API)

Concepts we Have Not Covered Here

- Dynamic parallelism (threads can launch new threads)
 - Good for irregular data parallelism (e.g., tree traversal, multi-grids)
- Running several tasks at the same time on a GPU (via MPI; they call it "Hyper-Q")

Bremen

W

- "Introduction to CUDA 5.0" on the course web page
- "CUDA C Programming Guide" at docs.nvidia.com/cuda/index.html

- Graphics Interoperability:
 - Transfer images directly from CUDA memory to OpenGL's framebuffer
- Dynamic shared memory
- Asynchronous memory copies between host ↔ device
- Dynamic memory allocation in the kernel
 - Can have serious performance issues
- Pinned CPU memory (
- CUDA Streams
- Multi-GPU programming, GPU-to-GPU memory transfer
- Zero-copy data transfer
- Libraries: CUBLAS, Thrust, ...
- Voting functions (__all(), __any())

 With Graphics Interoperability, you can render results from CUDA directly in a 3D scene, e.g. by using them as textures

133